
i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 175 --- #211 i
i

i
i

i
i

8Compatibility

As we saw right at the start, LATEX uses plaintext files, so they can
be read and written by any standard application that can open text
files. This helps preserve your information over time, as the plaintext
format cannot be obsoleted or hijacked by any manufacturer or sectoral
interest, and it will always be readable on any computer, from your
smartphone (LATEX is available for many handhelds, from old PDAs,
see Figure 8.1 on page 173, to Android devices, see Figure 8.2 on
page 174) through all desktops and servers right up to the biggest
supercomputers.

Figure 8.1: LATEX editing and processing on the Sharp Zaurus 5500
PDA

Formatting Information
�� ��175



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 176 --- #212 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

Figure 8.2: LATEX editing and processing on the Samsung Galaxy Note
4

However, LATEX is intended as the last stage of the editorial process:
formatting for print or display. If you have a requirement to re-use
the text in some other environment — a database perhaps, or on the
Web or a CD-ROM or DVD, or in Braille or voice output — then it should
probably be edited, stored, and maintained in something neutral like the
Extensible Markup Language (XML), and only converted to LATEX when a
typeset copy is needed.
Although LATEX has many structured-document features in common

with SGML and XML, it can still only be processed by the LATEX, PDFLATEX,
and X ELATEX programs. Because its macro features make it almost
infinitely redefinable, processing it requires a program which can
unravel arbitrarily complex macros, and LATEX and its siblings are the
only programs which can do that effectively. Like other typesetters and
formatters (Quark XPress, Adobe InDesign and PageMaker, FrameMaker,
Microsoft Publisher, 3B2, etc), LATEX is largely a one-way street leading to
typeset printing or display formatting.
Converting LATEX to some other format therefore means you will

unavoidably lose some formatting, as LATEX has features that others
systems simply don’t possess, so they cannot be translated — although
there are several ways to minimise this loss or compensate for it.
Similarly, converting other formats into LATEX often means editing back�� ��176 Formatting Information



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 177 --- #213 i
i

i
i

i
i

8.1. CONVERTING INTO LATEX

the stuff the other formats omit because they only store appearances,
not structure.
Most converters are one-way: that is, they convert into LATEX or out of

LATEX, and there are several excellent systems for doing the conversion
from LATEX directly to HyperText Markup Language (HTML) so you can at
least publish it on the web, as we shall see in section 8.2.
However, there is one system that does both, and includes a huge

range of formats: Pandoc (pandoc.org/). This is a large library
of Haskell routines for handling conversions, with a command-line
front end. Supported formats include Word, OpenOffice/Libre Office,
DocBook, InDesign, Markdown, and MediaWiki. Before trying the
systems described in section 8.1 on page 175 and section 8.2 on
page 182, see if Pandoc will handle your files. The exception is probably
converting from XML to LATEX for which a robust XSLT2 script is really
the only reliable solution.

8.1 Converting into LATEX

Before looking at one-way systems, see the earlier note about Pandoc.
There are several systems which will save their text in LATEX format.

The best known is probably LYX, which is a wordprocessor-like interface
to LATEX (not quite WYSIWYG, more What You See Is What You Mean).
Both AbiWord (Linux and Windows) and Kword (Linux) have a very
good Save As… LATEX output, and OpenOffice (all platforms) has a LATEX
plugin, so they can be used to open Microsoft Word documents as well
as their own format, and convert them to LATEX. Several maths packages
like the EuroMath editor, and the Mathematica and Maple analysis
packages, can also save material in LATEX format.
In general, most other wordprocessors and DTP systems either don’t

have the level of internal markup sophistication needed to create a LATEX
file, or they lack a suitable filter to enable them to output what they
do have. Often they are incapable of outputting any kind of structured
document, because they only store what the text looks like, not why it’s
there or what role it fulfils. There are two ways out of this:

f Use the File Save As… menu item to save the wordprocessor file as
HTML, rationalise the HTML using Dave Raggett’s HTML Tidy, and

Formatting Information
�� ��177

pandoc.org/
http://tidy.sourceforge.net/


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 178 --- #214 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

convert the resulting XHTML file to LATEX with any of the standard
XML tools (see below).

f Get the files into Word or ODF format, and write a transformation
in XSLT to convert the internal XML into LATEX. This is by far the
most robust way to do it, but the quality of most wordprocessing
files is poor when it comes to identifying which bits do what,
which is what LATEX needs, so some guesswork or heuristics may be
needed.

If you have large numbers of obsolete Word .doc files (too many to
open and save as .docx), you can try to use a specialist conversion
tool like EBT’s DynaTag (supposedly available from Enigma, if you can
persuade them they have a copy to sell you; or you may still be able
to get it from Red Bridge Interactive in Providence, RI). It’s old and
expensive and they don’t advertise it, but for GUI-driven bulk conversion
of consistently-marked Word (.doc, not .docx) files into usable XML
it beats everything else hands down. But whatever system you use, the
Word files MUST be consistent, though, and MUST use Named Styles from
a stylesheet (template), otherwise no system on earth is going to be able
to guess what they mean.
There is of course a fourth way, suitable for large volumes only:

send it off to the Pacific Rim to be scanned or retyped into XML or
LATEX. There are hundreds of companies from India to Polynesia who
do this at high speed and low cost with very high accuracy. It sounds
crazy when the document is already in electronic form, but it’s a good
example of the problem of low quality of wordprocessor markup that
this solution exists at all.
You will have noticed that most of the solutions lead to one place:

XML. As explained above and elsewhere, this format is the only one
so far devised capable of storing sufficient information in machine-
processable, publicly-accessible form to enable your document to be
recreated in multiple output formats. Once your document is in XML,
there is a large range of software available to turn it into other formats,
including LATEX. Processors in any of the common XML processing
languages like XSLT or Omnimark can easily be written to output LATEX,
and this approach is extremely common.�� ��178 Formatting Information

.doc
.docx
http://www.rbii.com/
.doc
.docx


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 179 --- #215 i
i

i
i

i
i

8.1. CONVERTING INTO LATEX

Much of this would be simplified if wordprocessors supported native,
arbitrary XML/XSLT as a standard feature, because LATEX output would
become much simpler to produce, but this seems unlikely.
However, the native format for both OpenOffice and Word is now

XML. Both .docx and .odf files are actually Zip files containing the
XML document together with stylesheets, images, and other ancillary
files. This means that for a robust transformation into LATEX, you just
need to write an XSLT stylesheet to do the job — non-trivial, as the XML
formats used are extremely complex, but certainly possible.
Among the conversion programs for related formats on CTAN is

Ujwal Sathyam and Paul DuBois’s rtf2latex2e, which converts Rich Text
Format (RTF) files (output by many wordprocessors) to LATEX2ε. The
package description says it has support for figures and tables; equations
are read as figures; and it can handle the latest RTF versions from
Microsoft Word 97/98/2000, StarOffice, and other wordprocessors. It
runs on Macs, Linux, other Unix systems, and Windows.

8.1.1 Getting LATEX out of XML

Assuming you can get your document out of its wordprocessor format
into XML by some method, here is a very brief example of how to
turn it into LATEX.
You can of course buy any fully-fledged commercial XML editor with

XSLT support, and run transformations within it. However, this is beyond
the reach of many individual users, although oXygen is available at a
discounted price to academic sites.
To do the job unaided you need to install three pieces of software:

Java, Saxon or another XSLT processor, and the DocBook 5.0 DTD
(links are correct at the time of writing). None of these has a graphical
interface: they are run from the command-line.
As an example, let’s take the above paragraph, as typed or imported

into AbiWord (see Figure 8.3 on page 178). This is stored as a single
paragraph with highlighting on the product names (italics), and the
names are also links to their Internet sources, just as they are in this
document. This is a convenient way to store two pieces of information
in the same place.

AbiWord can export in DocBook format, which is an XML vocabulary
for describing technical (computer) documents — it’s what I use for this

Formatting Information
�� ��179

.docx
.odf
http://java.com/download/
http://saxon.sourceforge.net/
http://www.docbook.org/xml/5.0/


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 180 --- #216 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

Figure 8.3: Sample paragraph in AbiWord being converted to XML

book. AbiWord can also export LATEX, but we’re going to make our own
version, working from the XML (Brownie points for the reader who can
guess why I’m not just accepting the LATEX conversion output).
Although AbiWord’s default is to output an XML book document type,

we’ll convert it to a LATEX article document class. In this example I’ve
changed the linebreaks to keep it within the bounds of the page size of
the PDF edition:
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"

"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<book>
<!-- ================================================== -->
<!-- This DocBook file was created by AbiWord. -->
<!-- AbiWord is a free, Open Source word processor. -->
<!-- You may obtain more information about AbiWord

at www.abisource.com -->
<!-- ================================================== -->
<chapter>

<title></title>
<section role="unnumbered">
<title></title>
<para>You can of course buy and install a fully-fledged
commercial XML editor with XSLT support, and run this
application within it. However, this is beyond the
reach of many users, so to do this unaided you just
need to install three pieces of software: <ulink
url="http://java.com/download/"><emphasis>Java</emphasis></ulink>,
<ulink
url="http://saxon.sourceforge.net"><emphasis>Saxon</emphasis></ulink>,
and the <ulink
url="http://www.docbook.org/xml/4.2/index.html">DocBook
4.2 DTD</ulink> (URIs are correct at the time of writing).
None of these has a visual interface: they are run from
the command-line in the same way as is possible with�� ��180 Formatting Information



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 181 --- #217 i
i

i
i

i
i

8.1. CONVERTING INTO LATEX

L<superscript>A</superscript>T<subscript>E</subscript>X.</para>
</section>

</chapter>
</book>

The XSLT language lets us create templates for each type of element
in an XML document. In our example, there are only three which
need handling, as we did not create chapter or section titles (DocBook
requires them to be present, but they don’t have to be used).
f para, for the paragraph[s];
f ulink, for the URIs;
f emphasis, for the italicisation.

I’m going to cheat over the superscripting and subscripting of the letters
in the LATEX logo, and use my editor to replace the whole thing with the
\LaTeX command. In the other three cases, we already know how
LATEX deals with these, so we can write the templates accordingly.
Writing XSLT is not hard, but requires a little learning. The output

method here is text, which is LATEX’s file format (XSLT can also output
HTML and other flavours of XML).
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="2.0">

<xsl:output method="text"/>

<xsl:template match="/">
<xsl:text>\documentclass{article}\usepackage{url}</xsl:text>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="book">
<xsl:text>\begin{document}</xsl:text>
<xsl:apply-templates/>
<xsl:text>\end{document}</xsl:text>

</xsl:template>

<xsl:template match="para">
<xsl:apply-templates/>
<xsl:text>&#x0a;</xsl:text>

</xsl:template>

<xsl:template match="ulink">
<xsl:apply-templates/>
<xsl:text>\footnote{\url{</xsl:text>
<xsl:value-of select="@url"/>
<xsl:text>}}</xsl:text>

</xsl:template>

<xsl:template match="emphasis">

Formatting Information
�� ��181



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 182 --- #218 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

<xsl:text>\emph{</xsl:text>
<xsl:apply-templates/>
<xsl:text>}</xsl:text>

</xsl:template>

</xsl:stylesheet>

1. The first template matches /, which is the document root (before
the book start-tag). At this stage we output the text which will
start the LATEX document, \documentclass{article} and
\usepackage{url}.
The apply-templates instructions tells the processor to carry
on processing, looking for more matches. XML comments get
ignored, and any elements which don’t match a template simply
have their contents passed through until the next match occurs, or
until plain text is encountered (and output).1

2. The book template outputs the \begin{document} com-
mand, invokes apply-templates to make it carry on pro-
cessing the contents of the book element, and then at the end,
outputs the \end{document} command.

3. The para template just outputs its content, but follows it with
a linebreak, using the hexadecimal character code x0A (see the
ASCII chart in Table E.1 on page 269).

4. The ulink template outputs its content but follows it with a
footnote using the \url command to output the value of the url
attribute.

5. The emphasis template surrounds its content with \emph{ and
}.

If you run this through Saxon, which is an XSLT processor, you can
output a LATEX file which you can typeset (see Figure 8.4 on page 182).
$ java -jar saxon9.jar -o para.ltx para.dbk para.xsl
$ pdflatex para.ltx
This is pdfTeX, Version 3.1415926-1.40.10 (TeX Live 2009/Debian)

1 Strictly speaking it isn’t output at this stage: XML processors build a ‘tree’ (a hier-
archy) of elements in memory, and they only get ‘serialised’ at the end of processing,
into a stream of characters written to a file.�� ��182 Formatting Information



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 183 --- #219 i
i

i
i

i
i

8.1. CONVERTING INTO LATEX

restricted \write18 enabled.
entering extended mode
(./para.ltx
LaTeX2e <2009/09/24>
Babel <v3.8l> and hyphenation patterns for english, usenglishmax,
dumylang, nohyphenation, farsi, arabic, croatian, bulgarian,
ukrainian, russian, czech, slovak, danish, dutch, finnish, french,
basque, ngerman, german, german-x-2009-06-19, ngerman-x-2009-06-19,
ibycus, monogreek, greek, ancientgreek, hungarian, sanskrit, italian,
latin, latvian, lithuanian, mongolian2a, mongolian, bokmal, nynorsk,
romanian, irish, coptic, serbian, turkish, welsh, esperanto,
uppersorbian, estonian, indonesian, interlingua, icelandic, kurmanji,
slovenian, polish, portuguese, spanish, galician, catalan, swedish,
ukenglish, pinyin, loaded.
(/usr/share/texmf-texlive/tex/latex/base/article.cls
Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
(/usr/share/texmf-texlive/tex/latex/base/size10.clo))
(/usr/share/texmf-texlive/tex/latex/ltxmisc/url.sty) (./para.aux)
[1{/home/peter/.texmf-var/fonts/map/pdftex/updmap/pdftex.map}]
(./para.aux))
</usr/share/texmf-texlive/fonts/type1/public/amsfonts/cm/cmr10.pfb>
</usr/share/texmf-texlive/fonts/type1/public/amsfonts/cm/cmr6.pfb>
</usr/share/texmf-texlive/fonts/type1/public/amsfonts/cm/cmr7.pfb>
</usr/share/texmf-texlive/fonts/type1/public/amsfonts/cm/cmti10.pfb>
</usr/share/texmf-texlive/fonts/type1/public/amsfonts/cm/cmtt8.pfb>
Output written on para.pdf (1 page, 54289 bytes).
Transcript written on para.log.
$

This is a relatively trivial example, but it serves to show that
it’s not hard to output LATEX from XML. In fact there is a set of
templates already written to produce LATEX from a DocBook file at
www.dpawson.co.uk/docbook/tools.html#d4e2905

Formatting Information
�� ��183

www.dpawson.co.uk/docbook/tools.html#d4e2905


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 184 --- #220 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

Figure 8.4: The typeset paragraph and its generated source code

You can of course buy and install a fully-fledged commercial XML editor
with XSLT support, and run this application within it. However, this is beyond
the reach of many users, so to do this unaided you just need to install three
pieces of software: Java1, Saxon2, and the DocBook 4.2 DTD3 (URIs are correct
at the time of writing). None of these has a visual interface: they are run from
the command-line in the same way as is possible with LATEX.

1http://java.sun.com/j2se/1.4.2/download.html
2http://saxon.sourceforge.net
3http://www.docbook.org/xml/4.2/index.html

1

\documentclass{article}\usepackage{url}\begin{document}
You can of course buy and install a fully-fledged commercial XML
editor with XSLT support, and run this application within it. However,
this is beyond the reach of many users, so to do this unaided you just
need to install three pieces of software:
\emph{Java}\footnote{\url{http://java.sun.com/j2se/1.4.2/download.html}},
\emph{Saxon}\footnote{\url{http://saxon.sourceforge.net}}, and the
DocBook 4.2
DTD\footnote{\url{http://www.docbook.org/xml/4.2/index.html}} (links
are correct at the time of writing). None of these has a graphical
interface: they are run from the command-line in the same way as is
possible with \LaTeX.
\end{document}

8.2 Converting out of LATEX

Before looking at one-way systems, see the earlier note about Pandoc
on page 175.
Converting LATEX to other formats is much harder to do comprehens-

ively. As noted before, the LATEX file format really requires the LATEX
program itself in order to process all the packages and macros, because�� ��184 Formatting Information



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 185 --- #221 i
i

i
i

i
i

8.2. CONVERTING OUT OF LATEX

there is no telling what complexities authors have added themselves
(what a lot of this book is about!).
Many authors and editors rely on custom-designed or homebrew

converters, often written in the standard shell scripting languages (Unix
shells, Perl, Python, Tcl, etc). Although some of the packages presented
here are also written in the same languages, they have some advantages
and restrictions compared with private conversions:
f Conversion done with the standard utilities (eg awk, tr, sed, grep,
detex, etc) can be faster for ad hoc translations, but it is easier to
obtain consistency and a more sophisticated final product using
lwarp, LATEX2HTML or TEX4ht — see below — or one of the other
systems available.

f Embedding additional non-standard control sequences in LATEX
source code may make it harder to edit and maintain, and will
definitely make it harder to port to another system.

f All the above methods (and others) provide a fast and reasonably
reliable way to get documents authored in LATEX onto the Web in
an acceptable — if not optimal — format.

f LATEX2HTML was written to solve the problem of getting LATEX-
with-mathematics onto the Web, in the days before MathML
and math-capable browsers. TEX4ht was written to turn LATEX
documents into Web hypertext — mathematics or not. The lwarp
project aims to allow a rich LATEX document to be converted to a
reasonable HTML5 interpretation, with only minor intervention on
the user’s part.

There is a very useful list of all the alternatives in the lwarp package
documentation (Dunne, 2018, p. 55–57)
8.2.1 Conversion toWord

There are several programs on CTAN to do LATEX-to-Word and similar
conversions, but they do not all handle everything LATEX can throw
at them, and some only handle a subset of the built-in commands
of default LATEX. Two in particular, however, have a good reputation,
although I haven’t used either of them (I tend to stay as far away from
Word as possible):

Formatting Information
�� ��185

http://www.ctan.org/pkg/lwarp
http://www.ctan.org/pkg/lwarp


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 186 --- #222 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

f latex2rtf by Wilfried Hennings, Fernando Dorner, and Andreas
Granzer translates LATEX into RTF — the opposite of the rtf2latex2e
mentioned earlier. RTF can be read by most wordprocessors,
and this program preserves layout and formatting for most LATEX
documents using standard built-in commands.

f Kirill A Chikrii’s TEX2Word for Microsoft Windows is a converter
plug-in for Word to let it open TEX and LATEX documents. The
author’s company claims that ‘virtually any existing TEX/LATEX
package can be supported by TEX2Word’ because it is customis-
able.

One easy route into wordprocessing, however, is the reverse of the
procedures suggested in the preceding section: convert LATEX to HTML,
which many wordprocessors read easily. The following sections cover
two packages for this. Once it’s in HTML, you could run it through Tidy
to make it XHTML, add some embedded styling using Cascading Style
Sheets (CSS), and rename the file to end in .doc, which can fool Word
into opening it natively.
8.2.2 The lwarp package

This LATEX package produces HTML5 output directly, using external utility
programs only for the final conversion of text and images. Mathematics
may be represented by SVG files orMathJax.
The lwarp package is under active development and supports a wide

range of formatting packages, but no attempt has been made to force
LATEX to provide for every HTML-related possibility, as HTML cannot
exactly render every possible LATEX concept.
8.2.3 LATEX2HTML

As its name suggests, LATEX2HTML is a system to convert LATEX structured
documents to HTML. Its main task is to reproduce the document structure
as a set of interconnected HTML files. Despite using Perl, LATEX2HTML
relies very heavily on standard Unix facilities like the NetPBM graphics
package and the pipe syntax. Microsoft Windows is not well suited to
this kind of composite processing, although all the required facilities are
available for download in various forms and should in theory allow the
package to run — but reports of problems are common.�� ��186 Formatting Information

.doc
http://www.ctan.org/pkg/lwarp
http://www.ctan.org/pkg/lwarp


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 187 --- #223 i
i

i
i

i
i

8.2. CONVERTING OUT OF LATEX

f The sectional structure is preserved, and navigational links are
generated for the standard Next, Previous, and Up directions.

f Links are also used for the cross-references, citations, footnotes,
ToC, and lists of figures and tables.

f Conversion is direct for common elements like lists, quotes,
paragraph-breaks, type-styles, etc, where there is an obvious HTML
equivalent.

f Heavily formatted objects such as math and diagrams are conver-
ted to images.

f There is no support for homebrew macros.
There is, however, support for arbitrary hypertext links, symbolic cross-
references between ‘evolving remote documents’, conditional text, and
the inclusion of raw HTML. These are extensions to LATEX, implemented as
new commands and environments.

LATEX2HTML outputs a directory named after the input filename,
and all the output files are put in that directory, so the output is self-
contained and can be uploaded to a server as it stands.
8.2.4 TEX4ht

TEX4ht operates differently from LATEX2HTML: it uses the TEX program
to process the file, and handles conversion in a set of postprocessors
for the common LATEX packages. It can also output to XML, including
Text Encoding Initiative (TEI) and DocBook, and the OpenOffice and
WordXML formats, and it can create TEXinfo format manuals.
By default, documents retain the single-file structure implied by the

original, but there is again a set of additional configuration directives to
make use of the features of hypertext and navigation, and to split files
for ease of use. This is a most powerful system, and probably the most
flexible way to do the job.
8.2.5 Extraction from PostScript and PDF

If you have the full version of Adobe Acrobat Reader (or one of several
other commercial PDF products), you can open a PDF file created
by PDFLATEX, select and copy all the text, and paste it into Word

Formatting Information
�� ��187



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 188 --- #224 i
i

i
i

i
i

CHAPTER 8. COMPATIBILITY

and some other wordprocessors, and retain some common formatting
of headings, paragraphs, and lists. Both solutions still require the
wordprocessor text to be edited into shape, but they preserve enough of
the formatting to make it worthwhile for short documents. Otherwise,
use the pdftotext program to extract everything from the PDF file as plain
(paragraph-formatted) text.

8.2.6 Last resort: strip the markup

At worst, the detex program on CTAN will strip a LATEX file of all
markup and leave just the raw unformatted text, which can then be
re-edited. There are also programs to extract the raw text from DVI and
PostScript (PS) files.

8.3 Going beyond LATEX

The reader will have deduced by now that while LATEX is possibly the
best programmable typesetting system around, the LATEX file format is
not generally usable with anything except the LATEX program. LATEX
was originally written in the mid-1980s, about the same time as the
Standard Generalized Markup Language (SGML), but the two projects
were not connected. However, TEX and LATEX have proved such useful
tools for formatting SGML and more recently XML that many users chose
this route for their output, using conversions written in the languages
already mentioned in section 8.2 on page 182.
Unfortunately, when the rise of the Web in the early 1990s pop-

ularised SGML using the HTML, browser writers deliberately chose to
encourage authors to ignore the rules of SGML. Robust auto-converted
formatting therefore became almost impossible except via the browsers’
low-quality print routines.
It was not until 1995–7, when the XML was devised, that it again

became possible to provide the structural and descriptive power of
SGML but without the complex and rarely-used options which had made
standard SGML so difficult to program for.

XML is now becoming the principal system of markup. Because it
is based on the international standard (SGML), it is not proprietary, so
it has been implemented on most platforms, and there is lots of free
software supporting it as well as many commercial packages. Like SGML,�� ��188 Formatting Information



i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 189 --- #225 i
i

i
i

i
i

8.3. GOING BEYOND LATEX

it is actually a meta-language to let you define your own markup, so
it is much more flexible than HTML. Implementations of the companion
Extensible Stylesheet Language (XSL) provide a direct route to PDF but
at the expense of reinventing most of the wheels which LATEX already
possesses, so the sibling XSLT can be used instead to translate to LATEX
source code, as shown in the example in section 8.1.1 on page 177. This
is usually much faster than writing your own formatting from scratch
in XSL, and it means that you can take full advantage of the packages
and sophistication of LATEX. A similar system is used for the Linux
Documentation Project, which uses SGML transformed by the Document
Style Semantics and Specification Language (DSSSL) to TEX
The source code of this book, available online at www.ctan.org/

tex-archive/info/beginlatex/src/ includes XSLT which
does exactly this.

Formatting Information
�� ��189

www.ctan.org/tex-archive/info/beginlatex/src/
www.ctan.org/tex-archive/info/beginlatex/src/


i
i

‘beginlatex’ --- 2018/12/4 --- 23:30 --- page 190 --- #226 i
i

i
i

i
i


